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Abstract
The implementation and performance of a parallel spatial direct numerical simulation

(PSDNS) approach on the Intel iPSC/860 hypercube and IBM SP1 and SP2 parallel comput-
ers is documented. Spatially evolving disturbances associated with the laminar-to-turbulent
transition in boundary-layer 
ows are computed with the PSDNS code. The feasibility of
using the PSDNS to perform transition studies on these computers is examined. The re-
sults indicate that PSDNS approach can e�ectively be parallelized on a distributed-memory
parallel machine by remapping the distributed data structure during the course of the cal-
culation. Scalability information is provided to estimate computational costs to match the
actual costs relative to changes in the number of grid points. By increasing the number
of processors, slower than linear speedups are achieved with optimized (machine-dependent
library) routines. This slower than linear speedup results because the computational cost
is dominated by FFT routine, which yields less than ideal speedups. By using appropriate
compile options and optimized library routines on the SP1, the serial code achieves 52{56
M
ops on a single node of the SP1 (45 percent of theoretical peak performance). The actual
performance of the PSDNS code on the SP1 is evaluated with a \real world" simulation that
consists of 1.7 million grid points. One time step of this simulation is calculated on eight
nodes of the SP1 in the same time as required by a Cray Y/MP supercomputer. For the
same simulation, 32-nodes of the SP1 and SP2 are required to reach the performance of a
Cray C-90. A 32 node SP1 (SP2) con�guration is 2.9 (4.6) times faster than a Cray Y/MP
for this simulation, while the hypercube is roughly 2 times slower than the Y/MP for this
application.
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1. INTRODUCTION

The state of the three-dimensional boundary-layer 
ow on the wings and fuselage of an

aircraft determines the viscous drag portion of the total drag of the aircraft. This viscous

drag, which is 
ow-state dependent, can amount to 40 or 50 percent of the total drag. (See

Bushnell et al., 1977.) Any decrease in the viscous drag can lead to reduced fuel expenditures.

This fuel savings can translate directly into reduced operating costs for the industry. The


ow �eld on a wing can be in a laminar, turbulent, or transitional (an intermediate state

that indicates transition from a laminar to a turbulent 
ow) state. Because a laminar 
ow

state yields less viscous drag than a turbulent 
ow state, laminar 
ow on the wings is

preferable and results in a net fuel savings. Today, turbulent 
ows engulf most of the wing

area of commercial aircraft. Clearly, any aircraft manufacturer that successfully designs an

aircraft with \laminar 
ow wings" (i.e., wings covered primarily by laminar 
ow) will have

an enormous advantage.

As yet, the transition from laminar to turbulent 
ow is not completely understood. The

�rst reasonably comprehensive method for predicting transition was derived from stability

theory, which is the eN method by Smith and Gamberoni (1956) and Van Ingen (1956).

Although the eN method is widely used to predict transition in a broad class of 
ows, it does

have some limitations: a quasi-parallel boundary layer is assumed; no amplitude information

about the ingested disturbance in the boundary layer is taken into account; and the method

is semiempirical, which requires some foreknowledge of the 
ow in transition. The true

physical problem involves the ingestion of disturbances that interact in a nonlinear manner

in the later stages of transition and are imbedded in a growing boundary layer. Consequently,

a method that accounts for nonparallel 
ow and nonlinear interactions is necessary to predict

transition.

Recently, Herbert and Bertolotti (1987) have devised a nonlinear, nonparallel computa-

tional method that is based on the parabolized stability equations (PSE). With some success,
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Malik and Li (1992) have extended the PSE approach to compute cross
ow disturbances in

swept Hiemenz 
ow. Validation of this new approach for a broad class of 
ows will con-

tinue throughout this decade. Before the development of this theory, the only approach to

solve the nonparallel, nonlinear boundary-layer transition problem was by direct numerical

simulation (DNS). To date, most studies with DNS have been limited to the temporal for-

mulation, in which a spatially periodic computational domain travels with the disturbance

and the temporal evolution of the disturbance is computed. This method has enabled the

extension of the simulations into the later stages of transition (Zang and Hussaini, 1987,

1990; and Laurien and Kleiser, 1989) and has provided a database of qualitative information

that unfortunately lacks the physically realistic spatial representation. Spatial DNS com-

putes spatially evolving disturbances and can provide needed quantitative information about

transition. Progress in spatial DNS has been made by, among others, Danabasoglu et al.

(1990, 1991) for channel 
ows; Fasel (1976), Spalart (1989), Fasel et al. (1990), Rai and

Moin (1991a, 1991b), Bestek et al. (1992), and Joslin et al. (1992, 1993) for boundary-layer


ows; and Joslin and Streett (1994) for swept-wing 
ows. For a more complete list of ac-

complishments in transition prediction with DNS, refer to the reviews by Kleiser and Zang

(1991) and Reed (1994).

Enormous speed and memory requirements are necessary for spatial DNS because of the

large domains and intensive computations that are involved. Machines that can process large

amounts of data at faster speeds are in ever increasing demand. Two possibilities exist for

achieving high computational speeds: technological advancements and parallel computations.

Technological advancements alone will not provide the desired computational speed because

certain intrinsic physical limitations are being reached. An important limitation is the cycle

speed, which is governed by the propagation speed of the signal in the given media. For

example, the Cray 1 (delivered in 1976) had a cycle time of 12.5 nsec, and the Cray 2

(delivered in 1987) had a cycle time of 4.1 nsec. Although 11 years elapsed, an improvement
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of only a factor of 3 in processor speed has been achieved. Parallel computation is a more

attractive alternate approach because the cost and size of computer components decrease by

an order of magnitude compared with Cray-type supercomputers, with only an incremental

decrease in component speed. The real advantage to parallel computing is the increase in

computational speed that occurs as the number of processors are increased.

A large body of literature covers the treatment of numerical algorithms for vector and

parallel computers. (See Ortega and Voigt, 1988.) In most cases, the numerical treatments

have focused on simpli�ed problems. In other cases, algorithms for computationally intensive

kernels in isolation from the entire application have been studied. These studies are all

necessary; however, an e�cient scheme for a kernel does not necessarily result in the e�cient

implementation of the whole scienti�c application. Typically, an entire application consists

of a number of kernels with di�erent data-distribution requirements, which necessitates data

movement between two kernels. This movement can considerably degrade the performance

of the entire application on a parallel machine.

The exploitation of parallelism for real-world computations becomes an even greater

challenge in the absence of tools that transform sequential codes into parallel codes. A

number of issues must be considered in the implementation of an entire application on a

parallel computer. Some of these issues include:

Data Mapping. The data distribution among the various processors of a parallel ma-

chine is a key factor in the e�ciency of a parallel implementation. For many scienti�c

applications, the optimal data distribution is not obvious and requires experimentation.

Communication Requirement. The choice of the algorithm and the data distri-

butions determines the communication requirements of an application. Two factors are

treated separately: the communication volume and the frequency of communication. Fre-

quent interprocessor communication is not desirable on parallel machines because of the high

communication-setup overheads. On such machines, large messages and infrequent commu-
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nication are preferable.

Problem Granularity. For a given number of processors, a problem granularity ex-

ists below which parallelization is not e�ective. The problem granularity depends on the

hardware and software characteristics of the parallel machine.

Single Node Performance. The e�cient implementation of a code on a single node is

important because any improvement in the computational performance on a single processor

will have a multiplicative e�ect on the overall parallel performance.

In summary, the whole scienti�c application needs to be implemented carefully to obtain

desirable performance on parallel machines.

Scienti�c applications can be clearly categorized according to their suitability for par-

allel implementation; however, many scienti�c and engineering applications fall into grey

areas where the suitability of parallelization for the application is not clear. In most cases,

the application must be implemented and tested to determine its suitability for parallel

computations. These applications include a variety of diverse numerical approaches. Some

examples of these applications are: Fischer et al. (198l), Henderson and Karniadakis (1991),

and Fisher and Patera (1994) who discussed the use of spectral element methods to char-

acterize the unsteady Navier-Stokes equations; Otto (1993), who studied chemical reactions

in a computational 
uid dynamics code; Jackson et al. (1991), who studied incompressible

turbulence with a temporal DNS code; and Eidson and Erlebacher (1995), who used a fully

balanced tridiagonal solver (all three directions) in a temporal DNS code to study compress-

ible, isotropic turbulence. Fisher and Patera (1994) summarize current work in the area of

parallel simulation of viscous incompressible 
ows. Although they discuss a variety of nu-

merical techniques which have been used on parallel architectures, including the �rst parallel

computation of a viscous incompressible 
ow by Moin and Kim (1982) on a 64-processor

ILLIAC IV, three-dimensional (3D) spatial direct numerical simulation (DNS) algorithms

are not discussed in the review.
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A serial spatial DNS code described by Joslin et al. (1992, 1993), which was used to

study laminar-to-turbulent transition 
ow problems on Cray vector machines, is used to

determine its suitability for parallelization on distributed-memory parallel machines. The

present paper documents the PSDNS implementation and performance studies conducted

by Joslin and Zubair (1993) on the Intel hypercube, the follow-up work by Hanebutte et al.

(1994) on the IBM SP1, and current IBM SP2 results.

2. GOVERNING EQUATIONS

To compute the disturbance development, the incompressible Navier-Stokes equations

are solved. The streamwise direction is x, the wall-normal direction is y, and the spanwise

direction is z. A sketch of the computational domain is shown in Figure 1. Instantaneous ve-

locities ~u = (~u; ~v; ~w) and pressure ~p are decomposed into the base components U = (U; V;W )

and P and the disturbance components u = (u; v;w) and p so that

~u(x; t) = U(x) + u(x; t) and ~p(x; t) = P (x) + p(x; t) (2:1)

where x = (x; y; z) and t is time.

The base 
ow is generally the steady-state solution of the Navier-Stokes equations. For

simplicity, this study will use the Blasius similarity pro�les for the base 
ow of a 
at-plate

transition problem.

To determine the disturbance component of the instantaneous velocities and the pres-

sure, substitute equation (1) into the Navier-Stokes equations and subtract the base-
ow

equations. The resulting unsteady, nonlinear disturbance equations are

@u

@t
+ (u � r)u+ (U � r)u+ (u � r)U = �rp+

1

R��
o

r
2u r � u = 0: (2:2)

Boundary conditions at the wall and in the far �eld are

u = 0 at y = 0 and u! 0 as y !1 (2:3)
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The equations have been nondimensionalized with respect to the free-stream velocity U1,

the kinematic viscosity �, and some length scale at the in
ow (e.g., displacement thickness

��o). A Reynolds number can then be de�ned as R��
o
= U1��o=�.

3. NUMERICAL TECHNIQUES

The serial algorithms contained in the spatial direct numerical simulation code are de-

scribed in detail by Joslin et al. (1992, 1993). Because the focus of this paper is on the

parallelization of the code, the serial routines are only listed.

In the streamwise direction (x-direction), fourth-order central �nite di�erences are used

for the pressure equation. At boundary and near-boundary nodes, fourth-order di�erences

are used. For the �rst and second derivatives in the momentum equations, sixth-order com-

pact di�erences by Lele (1992) are used. At the boundary and near-boundary nodes, explicit

�fth-order �nite di�erences are used. The compact di�erences lead to tridiagonal systems

(TRIDIAG), and the central �nite di�erences lead to a pentadiagonal system (PENTA-

DIAG); both of these systems can be solved e�ciently by an LU-decomposition with the

appropriate backward and forward substitutions.

In the wall-normal direction (y-direction), a Chebyshev series is used to approximate the

disturbance at the Gauss-Lobatto collocation points. Because this series and its associated

spectral operators are de�ned on [-1, 1] and the physical problem of interest has either a

semi-in�nite [0;1) or a truncated domain [0; ymax], an algebraic-mapping transformation

is employed. The Chebyshev series operators lead to matrix-matrix multiplications (MAT-

MAT) to determine derivatives.

In the spanwise direction (z-direction), periodicity is assumed, which allows for Fourier

series representations. With the Fourier series, spectral accuracy is obtained in the spanwise

direction, and fast Fourier transforms (FFT) may be used for fast computation of derivatives.

For more details on the spectral methods used here, refer to Canuto et al. (1988).

For time marching, a time-splitting procedure was used with implicit Crank-Nicolson
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di�erencing for normal di�usion terms; an explicit three-stage Runge-Kutta method by

Williamson (1980) was used for the remaining terms. This time-stepping procedure was

used successfully by Streett and Hussaini (1991) for Taylor-Couette 
ow simulations and

is desribed by Joslin et al. (1992) for the 
at-plate boundary-layer problem. In the time-

splitting procedure, the pressure is omitted from the momentum equations for the fractional

Runge-Kutta stage and time is advanced from to the intermediate disturbance velocities, a

Poisson pressure equation is solved for the full-stage pressure, and the full-stage velocities

are obtained with the pressure inclusion.

Disturbances are introduced into the boundary layer by forcing at the in
ow boundary;

however, the swept-wing problem of Joslin and Streett (1994) used surface suction and

blowing to introduce disturbances. At the out
ow, the bu�er-domain technique of Streett

and Macaraeg (1989) is used.

4. PARALLEL IMPLEMENTATION OF THE SPATIAL DNS

In this section, the various data-distribution options available for implementation in the

three-dimensional DNS code on a parallel machine are discussed, and the data distribution

used in this application is outlined.

4.1 Data Mapping

The DNS code consists of a number of computationally intensive kernels. Dependent

upon the data mapping, some of these kernels are executed locally on a single processor,

and the rest are executed globally across the processors. The kernels that are executed lo-

cally do not require communication between processors; kernels that are executed globally

require communication. The major computationally intensive kernels are the matrix-matrix

multiplication, the FFT, the tridiagonal solver, and the pentadiagonal solver. The operation

counts that correspond to the kernels are illustrated in Table 1; these operation counts are

for a one-time iteration of the DNS code. Of these major kernels, the matrix-matrix multi-

plication is the most computationally intensive kernel. Hereafter, np denotes the number of
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processors on a parallel machine, and nx, ny, and nz denote the number of data items (i.e.,

grid points) in the streamwise, wall-normal, and spanwise directions.

For the three-dimensional problem, three major data mappings exist:

x-mapping. The three-dimensional data are partitioned into nx two-dimensional planes

of nynz data items each. The �rst nx=np planes are mapped to processor P0, the next nx=np

planes are mapped to processor P1, and so on.

y-mapping. The three-dimensional data are partitioned into ny two-dimensional planes

of nxnz data items each. The �rst ny=np planes are mapped to processor P0, the next ny=np

planes are mapped to processor P1, and so on.

z-mapping. The three-dimensional data are partitioned into nz two-dimensional planes

of nxny data items each. The �rst nz=np planes are mapped to processor P0, the next nz=np

planes are mapped to processor P1, and so on. An example of this mapping is shown in

Figure 2 for np = 4.

As stated earlier, the data mapping determines whether a particular kernel is to be

executed across all processors or executed locally on a single processor. Table 2 shows the

executions of the major kernels for the three data mappings. For the x-mapping, a great

deal of communication is clearly required, which is undesirable. Both the y- and z-mapping

are more desirable than the x-mapping because most of the kernels are executed locally.

Because Table 1 indicates that the matrix-matrix multiply has a higher operation count

than the FFT, the z-mapping should be more e�cient than the y-mapping. Hence, our

implementation of the PSDNS code is based on the z-mapping.

Because the data are distributed among the np processors in block form with a z-

mapping, a global re-mapping (shown in Figure 3) allows the utilization of optimized serial

FFT library routines simultaneously on each node.
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4.2 FFT Implementation and Routine Speci�cs

The FFT kernel computes nxny sequences of discrete Fourier transforms of size nz. The

z-mapping distributes sequences across all processors of the machine. One way to compute

the discrete Fourier transform of these sequences is as follows: �rst, the transpose is taken of

the three-dimensional data (the resulting distribution is an x-mapping), the one-dimensional

FFT algorithm is then executed on sequences of length nz on each processor, the results are

multiplied by a coe�cient array, the inverse Fourier transform of the data is then computed,

and, �nally, the results are transposed back to the original data distribution. In this scheme,

all global data movement occurs in the transpose step. To keep communication overheads

to a minimum, the transpose operation must be implemented e�ciently. The transpose

operation is a complete exchange operation; every node has an equivalent amount of data

to exchange with every other node. The xor algorithm is used to implement this exchange

procedure because it is the optimal procedure on the Intel iPSC/860. The xor algorithm

(Bokhari, 1991), which is illustrated in Table 3, schedules various exchanges at particular

nodes to avoid link contention. In this scheme at the ith step, a node j sends data to node

iXj.

5. PSDNS VALIDATION

The evolution of a Tollmien-Schlichting wave in the three-dimensional 
ow is used to

validate the PSDNS approach. A disturbance with an arbitrarily small initial amplitude

uo = 0:0001% of the freestream velocity is introduced into the boundary layer by a forcing at

the in
ow for the PSDNS. The in
ow disturbance pro�les are obtained with linear stability

theory (LST). The parallel-
ow assumption is used for comparison with LST. Calculations

are made with an in
ow Reynolds numberR��
o
= 900 and frequency ! = 0:0774. The PSDNS

was computed on a grid of 200 uniformly spaced streamwise nodes (60 nodes per disturbance

wavelength), 61 wall-normal collocation points, and 8 spanwise nodes. The out
ow boundary

is 121��o from the in
ow boundary and the far-�eld (or free-stream) boundary is 75��o from
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the wall. For the time-marching scheme, the disturbance period is divided into 320 time

steps.

Figure 4 shows the streamwise evolution of the computed streamwise (u) and wall-

normal (v) velocity components of PSDNS compared with LST. Very good agreement in

amplitude and phase are found at every spanwise location in the physical domain. (Note,

that the bu�er-domain region is nonphysical and that the DNS and LST results are not

expected to agree.) This simple test case demonstrates that the PSDNS code is validated

with the theoretical solutions.

6. PSDNS ON INTEL IPSC/860 HYPERCUBE

Although direct simulations of transition involve large computational grids and many

thousands of time steps per simulation, the performance of the PSDNS code can be su�-

ciently examined for a single time step on smaller grids. The cost and feasibility of a full-scale

simulation can be estimated by using scaling information.

The range of parameters is limited to the capability of the machine. The Intel iPSC/860

hypercube at NASA Langley Research Center has 32 processors, each with 8 megabytes of

memory. Because the single precision is limited to 32-bit words and because simulations of

transition require the computations of small-scale phenomena, all performance test cases are

double-precision (64-bit words) computations.

6.1 Performance of PSDNS on Hypercube

The �rst sequence of performance simulations is computed on a grid of 64 streamwise

points and 41 wall-normal points. Figure 5 shows both the computational cost (total cost

minus communication) and the communication cost for each processor in CPU sec for a

variation in the spanwise grid and the number of processors. For a given computational grid,

a decrease in both the computational and communication cost is achieved by increasing the

number of processors. For this parallel implementation, the communication cost does not

exceed 6 percent of the total cost for all grids and variations in the number of processors that
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were considered. Joslin and Zubair (1993) showed the relative cost of the major numerical

techniques and the speedup of each technique with the number of processors. As expected

from Table 1, the computational cost breakdown indicates that the majority of the time

was spent on matrix-matrix multiply operations, and a negligible change occurs in the cost

contributions from each numerical technique with an increase in the number of processors.

The speedup of each numerical technique as the number of processors increases indicates

a nearly ideal linear speedup for the matrix-matrix multiply and the tridiagonal solver.

Because matrix-matrix multiplies account for nearly 80 percent of the total computational

cost and because the speedup for the matrix-matrix multiplies are nearly ideal, the total

speedup approaches a nearly linear rate. For example, the theoretically ideal speedup rate

is 4 with an increase from 8 to 32 processors and the speedup of 3.4 was realized in the

total computational cost. Concentrating on matrix-matrix multiply, a machine-dependent

BLAS routine (Dongarra et al., 1990) was introduced and the performance measurements

were repeated. Figure 6 shows the computational and communication costs with a spanwise

grid re�nement and an increase in the number of processors. In comparison with Figure

5, the trend of reduced cost as the number of processors is increased remains the same;

however, the relative communication cost has become signi�cant. Although the quantitative

cost of communication is the same as before the new matrix-matrix multiply routine was

introduced, the communication now equals 20 to 30 percent of the total cost because the

new matrix-matrix multiply routine has reduced the total computational cost by a factor of

4 to 5 in comparison with the original code implementation. The results in Figures 5 and 6

clearly demonstrate the signi�cant advantages of using machine dependent library routines

(when available) over user supplied routines.

The relative balance in work load between respective processors is an important element

in documenting the PSDNS performance. Figure 7 shows the computational and communi-

cation cost for each stage of the three-stage Runge-Kutta time step for each processor of an
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8-processor simulation on a spanwise grid of nz = 8. In this �gure, the AIMS performance

software shows the work load for each processor in a separate display area. The lines that

connect the processor areas indicate global communication; the shaded areas indicate the

computational work; the blank spaces between shaded areas (horizontal direction only) indi-

cate idle times. The results show that all processors are load balanced, with the exception of

the �rst node (P0). Because of the in
uence-matrix pressure solver that is used on the �rst

node only, additional work is always required on this node. The idle time amounts to about

15 to 20 percent of the total cost for a single time-step advancement. For the present com-

bination of numerical techniques and parallel implementation, this is the best load balance

that can be expected.

Figure 8 shows the relative cost of the numerical techniques and the speedup of each

technique with the number of processors. Unlike the initial implementation, where matrix-

matrix multiply accounted for 80 percent of the total computational cost, the use of the

optimized (or BLAS) matrix-matrix multiply routine leads to more balanced relative work-

loads among the major numerical techniques. (Hereafter, all computations and results are

with the BLAS matrix-matrix multiply routine.) The communication and FFT have com-

parable relative cost and now dominate over the other major numerical techniques. The

matrix-matrix multiply and the tridiagonal solver both have nearly ideal speedups; however,

the total computational speedup is only about half of the ideal rate. This decrease in e�-

ciency occurs because the FFT routine is the dominant numerical technique and the FFT

rate of speedup is not ideal.

The present multiprocessor implementation of the PSDNS can be further evaluated

by varying the number of x � y planes on each processor. For example, the use of eight

spanwise grid points on an eight-processor simulation indicates that each processor performs

computations on a single x�y plane; eight spanwise grid points on a four processor simulation

indicates that each processor performs computations on two x�y planes. Figure 9 shows the
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cost for a single x � y plane on each processor compared with the cost of four x � y planes

on each processor. Because FFT and global communication costs increase, cost increases are

incurred in both cases with increased number of processors. Although the FFT technique

and the global communication are both a�ected by changes in the number of processors for a

�xed number of x�y planes on each processor, the costs are constant for all other techniques.

For four x� y planes on each processor, note the initial drop in the computational cost from

two to four processors.

In the remainder of this section, the streamwise, wall-normal, and spanwise grids will be

re�ned to determine scaling costs. In Figure 10, the computational and communication cost

with number of processors and spanwise grid re�nement for the case where the streamwise

grid is re�ned from nx = 64 to nx = 128. Consistent with the coarse-grid results shown

in Figure 6, decreases in both the computational and communication costs are achieved

by increasing the number of processors, and the communication cost accounts for 10 to 30

percent of the total computational cost.

Figure 11 shows the major numerical technique costs and the increase in computational

cost associated with a spanwise grid re�nement on a �xed number of processors: eight.

The numerical techniques and communication cost are balanced; however, communication

becomes very signi�cant as the spanwise grid is re�ned. Because the FFT routine is the

dominant numerical technique and because the FFT slowdown rate is small, the total rate of

slowdown closely follows the FFT rate. This result is advantageous; it indicates that the cost

increases are less than the re�nement factor of spanwise grid re�nement. If the spanwise grid

is re�ned by a factor of four, then only a factor-of-three increase in the total computational

cost results.

Finally, Figure 12 shows that streamwise grid re�nements lead to nearly linear theoretical

increases in cost; Figure 13 shows that wall-normal grid re�nements also lead to nearly

ideal linear increases in computational cost. Although the results in Figure 13 show that
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the matrix-matrix multiplies scale like n2y, the FFT and communication dominate the cost

leading to the total cost scaling like the FFT rate. These scaling results can be used to

estimate the cost of simulations which require �ne grids (i.e., large number of grid points).

6.2 Large-Scale Simulation on Hypercube

The present performance data for the PSDNS suggest that insu�cient core memory is a

limitation of the hypercube. The largest grid that �ts on a single node has 128 streamwise,

41 wall-normal, and 4 spanwise points (21,000 total grid points). An attempt to perform

computations with 8 spanwise planes of this same x � y grid failed because of insu�cient

memory. Because the code requires about 160 bytes per grid point, the 21,000-point grid

used about 3.4 megabytes of memory; the failed grid required 6.8 megabytes (plus operating

system). The largest grid that could potentially be used for the present PSDNS code has

less than 42,000 grid points on each processor. To determine if simulations of transition can

be undertaken, the grid requirements must be speci�ed to estimate the computational cost

requirements and then compared with the core-memory limitations. The grid resolution is

highly dependent on the physical problem and the numerical techniques. To estimate the

feasibility of using PSDNS on the hypercube, a sample transition problem computed on a

single processor of a Cray-2 supercomputer is used for comparison.

In a recent study, Joslin and Streett (1994) computed the linear and nonlinear evolution

of a cross
ow vortex packet on a swept wing with spatial DNS on the Cray-2. The cost of

this computation amounted to approximately 125 CPU hrs with a single processor. The grid

contained 901 chordwise, 61 wall-normal, and 32 spanwise points (1.76 million total points)

which required 36.6 megabytes of core memory. The unsteady computation required 9500

time steps in the time-marching scheme to reach the nonlinear in
ectional velocity pro�le

stage, which occurs just prior to the laminar-to-turbulent transition.

Each x�y plane of the Joslin and Streett (1994) study contained 55,000 grid points (8.8

megabytes of memory), which is beyond the capability of the present hypercube (8 megabytes
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per processor). In this case, the feasibility of using PSDNS has been easily determined by

examining the memory limitation alone. However, if 16 or 32 megabytes of memory per

processor were available transition studies could potentially be conducted on the hypercube.

Then the feasibility of using this parallel computer would rest on the computational cost of

such a simulation.

The temporal cost can be determined based on the previous performance results of a

single time step. From data in Figures 12 and 13, the rates at which computational cost

increases with streamwise and wall-normal grid re�nements can be roughly estimated at

1.95 and 2.15, respectively. The performance results indicate that a single time step on a

grid of 64 streamwise, 41 wall-normal, and 32 spanwise points distributed on 32 processors

will cost 3.7 sec for each processor. With the scaling rates, the computation by Joslin and

Streett (1994) performed on the hypercube is estimated to cost 77 sec for each processor per

time step. This results in a total cost of 206 hr for each processor to achieve the nonlinear

in
ectional velocity pro�le state described by Joslin and Streett (1994). With the dedicated

use of a 32-processor hypercube with 16 megabytes of memory per processor, a simulation

could be completed in approximately 9 days, which is nearly twice the cost of using a Cray-2

supercomputer. This comparison is a rough estimate of the total computational cost required

for the simulations because only small grids can be used. On a grid with 64 streamwise, 41

wall-normal, and 32 spanwise points, the computational cost of 3.0 sec resulted on a single

processor of a Cray-Y/MP; the performance was 189 mega
ops. For the same grid, the

computational cost on the hypercube resulted in 3.7 sec for each processor and roughly 153

mega
ops.

In summary, simulations can apparently be performed on the hypercube, provided that

each processor has at least 16 megabytes of memory. Similar to using supercomputers, the

hypercube would require a number of days to complete a single simulation. To decrease

the memory and computer-cost requirements, two basic alternatives can be explored. The
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�rst alternative is to increase the number of processors working on a given grid; the second

alternative is to reduce the computational grid size for a given simulation. However, by

decreasing the size of the grid, the PSDNS will not resolve the smaller scales (subgrid),

which will degrade the results. To capture these small scales with an appropriate model, the

PSDNS approach becomes a large-eddy simulation (LES) code, or PSLES. As discussed and

demonstrated by Piomelli et al. (1990), LES can reduce the computational grid and cost by

an order of magnitude in comparison with DNS. If a subgrid-scale mode could accurately

capture the physics in the boundary-layer 
ow, then a PSLES on a computational grid of

256 streamwise, 41 wall-normal, and 32 spanwise points, distributed on 32 processors, could

potentially be computed. The cost for a single time step would be 14 sec for each processor.

For the swept-wing problem described by Joslin and Streett (1994), the total computational

cost on this LES grid would amount to 37.5 hr for each processor, or 1.5 days. Although

the PSLES performance scalings are slightly underestimated because additional costs are

involved with this model, PSLES seems plausible, and its use on parallel computers will be

explored in the near future.

7. PSDNS ON IBM SP1

The IBM SP1 (Gropp et al., 1994) scalable parallel computer utilized in the presented

performance study consists of 128 processing nodes. Each node is essentially an IBMRS/6000

model 370 workstation with a clock rate of 62.5 MHz. The local memory is 128 Mb, and

the processor data and instruction cache is 32 Kb each. The individual nodes are connected

by a multistage network that consists of high-performance switches (50�sec latency, 8.5 Mb

bandwidth); each switch can support up to 16 nodes. The peak performance obtained with

one multiplication and one addition on 64-bit 
oating point numbers per clock cycle is 125

M
ops for each processing node. However, in practice, a FORTRAN code delivers 15 to 75

M
ops. The access to Argonne's SP1 is controlled by a scheduler, which ensures that the

requested node partition is operated in a dedicated mode. Thus, only the user application
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and some necessary Unix demons are executed on the assigned processor partition.

Because the PSDNS code is based on the message-passing paradigm with explicit data

distribution, good portability among a broad class of parallel computers is expected. The

code was ported to the SP1 with only minor changes. To perform local FFT's in the spanwise

direction nz, the data must be remapped; an x-mapping allows the utilization of optimized se-

rial FFT library routines (IBM Guide and Reference, 1992) in the z direction. The hypercube

implementation of the PSDNS code relies on the xor algorithm for the global data exchange;

the IBM implementation makes use of a global index routine provided by the AIX-parallel

environment (IBM Parallel Programming Reference, 1993). As demonstrated in Figures 5

and 6, a signi�cant performance gain can be achieved by utilizing a machine-speci�c basic

linear algebra subprogram (BLAS) level 3 routine for the matrix-matrix multiplication. Be-

cause this routine is also available on the IBM as part of the ESSL library (IBM Guide and

Reference 1992), the advantage can also be taken in the SP1 and SP2 implementations. The

performance of the application code is further improved through appropriate selection of the

compiler options. As a result, the run time of the serial code can be reduced by a factor of 2.3

compared with a compilation without any options. To demonstrate the signi�cant impact

of the library routines and the power of the SP1, consider the test problem above where the

Cray Y/MP achieved 189 M
ops and a single node of the hypercube realized only 5 M
ops.

For the same problem, a single node of the SP1 delivers 52.5 M
ops for the double-precision

(i.e., 64-bit) computation.

The performance of the simulation code for a wide range of problem sizes with number of

processors is documented. Further, a scaling analysis is presented in which each of the three

problem dimensions are scaled individually and the number of processors is kept constant.

The performance study is concluded with a discussion of a real-world large-scale simulation.

Recall that thousands of time steps are required for a single simulation and that performance

�gures for only one time step of the PSDNS code are presented here.
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7.1 Performance of PSDNS on SP1

Performance data are collected for the serial code on a single node of the SP1 and for

the parallel code on up to 64 processing nodes. The chosen problem dimensions are repre-

sentative of actual simulations that are currently performed on Cray-class supercomputers.

To determine scaling information, the wall-normal dimension is �xed at ny = 41 grid points,

the streamwise grid is varied to include nx = 64, 128, and 256, and the spanwise direction

is varied from nz = 8 to 128. Thus, experimental performance data can be obtained for

problems that range from as small as 64 streamwise, 41 wall-normal, and 8 spanwise grid

points (20; 992 grid points) to a problem that is 64 times larger and contains 256 streamwise,

41 wall-normal, and 128 spanwise grid points (1:3 million grid points).

Similar to the hypercube measurements, the PSDNS code is instrumented with a set of

timers to record separate performance data for di�erent parts of the computation (the total

and four dominating algorithmic kernels) and the communication. These measurements are

wall-clock time. In addition, by including the idle time that results from the necessary

synchronization points of the code in the time data, processor-independent performance

�gures can be obtained. Processor idle time is discussed below in conjunction with the

large simulation for which the small serial fraction of the PSDNS code is experimentally

determined.

Figures 14-16 show the computational and communication cost with variation in the

streamwise and spanwise grids. The excellent scaling of the code on the SP1 are clearly

evident; however, large communication costs relative to the computation costs are incurred

because of the unbalanced architecture of the current SP1 (ie., network performance lags

behind compute performance of processing nodes) on the one hand and the algorithmic

communication penalty on the other hand. The communication penalty must be incurred

in order to utilize highly optimized serial FFT routines in the spanwise direction. The good

scaling of the communication cost with respect to the number of processors is noteworthy
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because the communication that occurs in the PSDNS code involves a complete exchange,

which represents a stringent test to the communication network.

The speedup of a parallel code for �xed-size problems is an important performance

metric. For the PSDNS code, Figures 17-19 show the speedup for variations in the streamwise

and spanwise grids with number of processors. The results demonstrate that the performance

of the algorithm can be improved by either increasing the number of spanwise grid points

or increasing the number of streamwise grid points. However, the code is less sensitive

to changes in the size of the streamwise dimension than it is to changes in the number of

spanwise grid points. For all test cases, the parallel e�ciency of the PSDNS code stays above

40 percent, even when 64 processing nodes are utilized.

A theoretical speedup metric can be obtained by ignoring all communication costs.

These metrics are also given in Figures 17-19. For large problems with 64 and 128 spanwise

grid points, a superlinear speedup is observed. The superlinear theoretical speedup for the

large problems is not a surprise. The good scalability of the algorithm, combined with

the better memory access of the local portion of the distributed data structure is the most

evident explanation. For a discussion of superlinear speedup, the reader is referred to Sun

et al. (1994).

To further examine the performance of the simulation algorithm, the cost of the major

numerical techniques and communication with number of processors is shown in Figures 20

and 21 for nx = 64 and nx = 256. The cost of each kernel relative to the computational cost

shows that both the FFT and the matrix-matrix multiply each require roughly 30 percent

of the total computing time on the SP1. When the number of processors is small, the

cost for the FFT routine is higher than for the matrix-matrix multiply. The tridiagonal

and pentadiagonal systems remain nearly constant at about 10 and 5 percent of the total

computational cost, respectively. The cost for communication is relatively high, and for a

large number of processors the communication costs reach levels as high as 80 to 90 percent
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of the computational cost. The slight drop in the communicational costs between 32 to 64

processors in Figure 21 can be attributed to the fact that idle time is included in the overall

computational cost.

The itemized speedup curves in Figures 20 and 21 show the following: a superlinear

speedup for the FFT kernel; an ideal linear speedup for the tridiagonal solver; a nearly ideal

speedup for the matrix-matrix multiply; and a moderate speedup for the pentadiagonal

solver. The overall speedup of the computational fraction of the algorithm is close to that

of the matrix-matrix multiply (the kernel that dominates the algorithm).

7.2 Complete Data Exchange

The performance of the complete data exchange portion of the algorithm deserves a

closer analysis. The startup latency and bandwidth are the two most important quantities

for evaluating a communication network. However, to analyze an application code, obtain-

ing only an experimental bandwidth that includes the startup costs is su�cient. Before a

meaningful discussion of the bandwidth achieved per processor can be given, both the actual

message volume and the message size must be determined. The regular and throughout the

simulation �xed communication pattern results in deterministic values for these quantities.

The data-exchange routine is called 51 times during one time step of the algorithm. Thus,

the message volume during one time step of the double-precision code (i.e., 8 bytes per data

item) is given by 51 � 8 � nxny(np � 1)nz
np
. For example, the message volume is given in

Figure 22 for nz = 32, 64, and 128 spanwise grid points and up to np = 32 processing

nodes. The message volume quickly approaches its asymptotic value of 51 � 8 � nxnynz.

Also shown in Figure 22, the message size of each individual message drops rapidly with the

number of processors. The formula for determining the message size is 8� nxnynz=n
2

p. To

obtain the experimental bandwidth, the message volume must be divided by one-half of the

required wall-clock time. The factor of one-half is used because the data must be sent as

well as received. The experimental bandwidth achieved per processor is shown in Figure 23
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as a function of the message size, which is given on a logarithmic scale. For large messages,

the experimental bandwidth is close to the maximum value of the network bandwidth (8.5

Mb/sec). However, the startup latency reduces the observed bandwidth for smaller message

sizes. The startup latency prevents the communication from being ideally scalable with the

number of processors. A �xed-size problem distributed among a larger set of processors ne-

cessitates the exchange of more messages of shorter message size. Hence, network contention

does not slow down the data exchange.

7.3 Scaling Analysis of the PSDNS Code

The scalability study is summarized in Figures 24-26. The test case with 64 streamwise,

41 wall-normal, and 32 spanwise grid points is used as the pivot point for this study, which

is carried out on 16 processors. Figure 24 depicts the computational costs and slowdown for

streamwise grid re�nement. The FFT, the matrix-matrix multiply, and the communication

cost are slightly superlinear; the overall computation time doubles for 128 grid points and

quadruples for 256 points. Figure 25 gives the computational costs and slowdown for the

individual kernels with a wall-normal grid re�nement. The normalized count for the matrix-

matrix multiply is O(n2y) (Table 1), which can readily be seen in the slowdown curve for

this major kernel. If ny is doubled, an execution time that is four times larger results for

the matrix-matrix multiply. The pentadiagonal solver also shows a slowdown that is more

than linear; the FFT, the tridiagonal solver, and the communication costs scale linearly.

The scaling of the overall computational cost follows the dominating kernel (matrix-matrix

multiply); thus, it exhibits a slowdown of 2.8 when the wall-normal dimension is doubled.

Finally, Figure 26 shows the costs and slowdown resulting from a spanwise grid re�nement.

A nearly linear scaling of the overall execution time (computation plus communication time)

is observed for the range of spanwise dimensions (32 to 128 grid points). A closer look at

the individual slowdown con�rms the normalized count of O(log
2
nz) (Table 1) for the FFT

kernel. Although all other kernels scale linearly, the FFT kernel causes the computational
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cost to follow the logarithmic increase of the FFT. We can expect that the overall time

will increase at a rate that is greater than linear as the number of spanwise grid points is

increased.

7.4 Memory Requirement of the PSDNS Code

The memory requirement of the PDSNS code limited the applications available for study

on the hypercube; however, the SP1, with 128 Mb of core memory on each node, allows these

much larger simulations. The largest grid that can be calculated on a single node of the SP1

contains 671 744 grid points (e.g, 128 streamwise, 41 wall-normal, and 128 spanwise points).

The executable code for this calculation requires 110 Mb of core memory. A rough estimate

for the memory requirement for the serial code then can be given as 170 bytes per grid

point. However, because the memory requirement is a function of both the problem size and

the number of processors, no simple relationship between executable code size and problem

size can be given. In Figure 27, the memory sizes of the executable code for the large test

case are presented. The reduction in the executable code size caused by the distributed

data structure is clearly visible. The total memory requirement (i.e., the size of the parallel

executable code times the number of processors) is larger than the memory needed by the

serial code (due to the additional overhead that results from the data remapping routine).

7.5 Large-Scale Simulation on SP1

The swept-wing 
ow study by Joslin and Streett (1994) was used to determine the

feasibility of using the hypercube for transition simulations. For a comparable SP1 feasibility

estimate, a grid with 896 streamwise, 61 wall-normal, and 32 spanwise grid points was used.

(In this parallel implementation, the streamwise grid size must be an integer factor of the

number of processors.) Thus, the computational grid contains over 1.7 million grid points.

The Cray Y/MP performs one time step of this simulation in 54 seconds and delivers 240

M
ops. Therefore, the computational expense of one time step is 12; 960 M
op. The large

core memory of the SP1 allows a problem of the same size to be computed on as few as eight
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processing nodes. The computational costs of the PSDNS algorithm with various number

of SP1 processors are presented in Figure 28. The dashed line gives the total time required

by the algorithm to perform one time step. If we compare these SP1 timings with the times

required by a single node of the Cray Y/MP and Cray C-90 (marked with solid squares in the

same plot) we see that the PSDNS code is highly competitive with these serial supercomputer

performances for as few as 8 and 32 processing nodes of the SP1, respectively.

The actual measured execution time, which includes communication and idle time, is

given in Table 4 for np = 8, 16, and 32 nodes of the SP1. An idealized execution time

can be obtained by subtracting those times that each processing node spends idle or in

communication. Because the serial part of the algorithm is performed only on the �rst

node, two idealized times must be recorded; one value for the �rst node and another for

the remaining processing nodes. The performance of the PSDNS code (in M
ops), based

on the actual time and the idealized time, is given in Table 4. The idealized performance

of 55 M
ops per processor is noteworthy. Recall that even though the peak performance of

a single node is 128 M
ops, 15 to 75 M
ops are generally observed for actual applications.

The last column of Table 4 shows the memory requirements of the executable code; these

numbers show that the code is far from reaching the local memory limit of 128 Mb.

A performance summary for the communication part of the algorithm is given in Table

5. The presented values for the message volume and the message size are calculated with the

formula presented in section 7.2. The measured experimental bandwidth agrees well with

the values shown in Figure 23 for the large test case.

By using the idealized execution times for node 1 and for nodes 2{np in Table 4 (the

idealized execution time excludes all idle time and communication costs), one can determine

experimentally the serial and parallel fractions of the PSDNS algorithm. The di�erence

between the two execution times is the time spent in the serial part of the parallel algorithm.

If we multiply the execution time of node 2 by the number of processors, we obtain the
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execution time of the parallel portion. In this context, total execution time is equal to the

time spent by all processing nodes combined. If we normalize the time spent in the serial and

parallel portions of the algorithm with the total execution time we obtain the serial fraction

s and the parallel fraction p, respectively. Surprisingly, the serial fraction is only 1.4 percent,

and the parallel fraction is 98.6 percent of the total. Amdahl's law (Amdahl, 1967) provides

a theoretical speedup that is derived from these two quantities:

Sp =
1

s+ p

np

(7:1)

For 8, 16, and 32 processing nodes, the theoretical speedup Sp of the PSDNS code is 7.29,

13.22, and 22.32, respectively. In the limit of np !1, the speedup asymptotically reaches

the value 1=s. Even though the parallel granularity of the PSDNS code is restricted for this

problem to 32 processing nodes, the theoretical maximum speedup is 71.

8. PERFORMANCE OF PSDNS ON IBM SP2

Although the next-generation parallel computer from IBM, called the SP2 (IBM Press

Release, 1994; Saini, 1994), is identical to the SP1 architecture, its node performance has

more than doubled and the communication network bandwidth has increased fourfold. For

the SP2, the increase in communication bandwidth relative to the computing performance

should provide a better balanced system, which should further improve the performance

results of PSDNS.

The IBM SP2 [Ref. NAS] located at NASA Langley Research Center for which per-

formance measures are presented contains 48 processing nodes (IBM RS/6000 Model 590).

Each of these nodes has at least 128 Mb of main memory and 2 Gb of disk space. The nodes

are based on a POWER2 multi-chip RISC processor containing two integer and two 
oating-

point computation units. The clock rate is 66.7 MHz and the data cache is 256 kb. Each


oating-point unit can �nish two 64-bit operations (one multiplication and one addition) per

clock cycle. This results in a theoretical peak performance of 267 MFlops. The nodes of the
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SP2 are inter-connected by a high-performance switch (TB switch level 2 at NASA Langley

is approximately 45 �sec latency, 34 Mb/sec bandwidth)

The large-application simulation for which the SP1 performance is given in Figure 28, has

been repeated on the 48 nodes SP2 at NASA Langley Research Center. The computational

costs of the PDNS simulation with variation in the number of SP2 processors is compared

in Figure 29 with the Cray Y/MP and Cray C-90 timings. A preprocessing step prior to the

compilation of the FORTRAN code (invoked by the IBM xlf compiler as option -P), which

has been instrumental in achieving high computational performance on the nodes of the

SP1 has not been made available on the SP2 at NASA Langley at the time of this report.

Therefore, the performance numbers presented in Figure 29 do not demonstrate the full

potential of the SP2 hardware, rather the results re
ect the limitations due to the current

software support. In spite of the software limitation, the improvement in communication

performance on the SP2 is clearly visible in Figure 29. While the time spent for computation

could not be noticeably reduced on the SP2 compared to the SP1 (above mentioned software

limitations), the communication improved nearly 5 fold. This decrease in communication cost

has made the SP2 highly competitive with the Cray C-90 in terms of compute-power per

dollar. One can expected that future software releases will take advantage of the POWER2

RISC architecture and thus the SP2 will deliver higher compute performance as well.

9. CONCLUDING REMARKS

The performance of a recently implemented parallel spatial direct numerical simulation

(PSDNS) approach on the Intel iPSC/860 hypercube and IBM SP1 and SP2 is documented.

The PSDNS results are in good agreement with linear stability theory for a small-amplitude

test case, which serves as the initial validation of the code on the parallel computer.

The results for the hypercube show that the work is well balanced between the processors

(except the �rst node, which will have approximately 15 to 20 percent larger work load

because of the numerical techniques employed). Furthermore, a speedup with a factor of
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4 to 5 was obtained by using machine-dependent libraries rather than standard Fortran

routines. The feasibility study of using the PSDNS on the hypercube for transitional 
ows

indicates that such simulations could be conducted provided each processor had a minimum

of 16 megabytes of memory; however, the computational cost is approximately twice that of

the Cray-2 supercomputer. Furthermore, the use of a subgrid-scale model to compute large-

eddy simulations (PSLES) would reduce the computational cost by an order of magnitude

compared with PSDNS. Large-eddy simulations could readily be used to study transition on

the hypercube at a reasonable computational cost.

The performance study of the PSDNS code on the larger and more powerful IBM SP1

and SP2 distributed memory machines yields results which emphasize the advantages of

parallel machines. The scalability information obtained by independently varying the num-

ber of grid points in each of the three problem dimensions con�rms the theoretical scaling

analysis. It is demonstrated that only eight nodes of the SP1 are needed to perform such

a large-application simulation in the same amount of time as required by a Cray Y/MP.

Furthermore, the utilization of 32 processing nodes on the SP1 reduces the execution time to

roughly one-third (to nearly one-�fth on the SP2 with 32 nodes). Both the parallel e�ciency

of the PSDNS code (above 40 percent for all performed calculations) on the SP1 and the

high serial performance of 52{56 M
ops on a single SP1 node (45 percent of theoretical peak

performance) contribute to this success. While computations with 32 SP1 processors become

highly competitive to the advanced Cray C-90, a 32 SP2 processor computation exceeds the

C-90 performance.
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Figure 1. Computational domain of boundary-layer transition problem.

Figure 2. Computational domain.

Figure 3. Global remapping results in local FFT's in spanwise direction.

Figure 4. Amplitude growth with downstream distance for a Tollmien-Schlichting wave with

initial amplitude uo = 0:0001%, Reynolds number R��
o
= 900, and frequency ! = 0:0774.

Figure 5. Computational and communication cost with number of processors for initial

implementation of PSDNS, where nx = 64 and ny = 41.

Figure 6. Computational and communication cost with number of processors for optimized

PSDNS, where nx = 64 and ny = 41.

Figure 7. Computational-cost breakdown for each processor for initial implementation of

PSDNS, where nx = 64, ny = 41, and nz = 8.

Figure 8. Computational-cost breakdown and speedup with number of processors for PSDNS,

where nx = 64, ny = 41, and nz = 64.

Figure 9. Computational-cost breakdown for one (left) and four (right) x � y planes per

processor with number of processors for PSDNS, where nx = 64 and ny = 41.

Figure 10. Computational and communication cost with number of processors for PSDNS,

where nx = 128 and ny = 41.

Figure 11. Computational-cost breakdown and speedup with spanwise grid for PSDNS,

where nx = 128, ny = 41, and np = 8.

Figure 12. Computational-cost breakdown and slowdown with streamwise grid re�nement

for PSDNS, where ny = 41, nz = 32, and np = 16.

Figure 13. Computational-cost breakdown and slowdown with wall-normal grid re�nement

for PSDNS, where nx = 64, nz = 32, and np = 16.

Figure 14. Computational and communication cost with number of processors for PSDNS,

where nx = 64 and ny = 41.
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Figure 15. Computational and communication cost with number of processors for PSDNS,

where nx = 128 and ny = 41.

Figure 16. Computational and communication cost with number of processors for PSDNS,

where nx = 256 and ny = 41.

Figure 17. Computational speedup with spanwise grid for PSDNS, where nx = 64 and

ny = 41.

Figure 18. Computational speedup with spanwise grid for PSDNS, where nx = 128 and

ny = 41.

Figure 19. Computational speedup with spanwise grid for PSDNS, where nx = 256 and

ny = 41.

Figure 20. Computational-cost breakdown and speedup with number of processors for PS-

DNS, where nx = 64, ny = 41, and nz = 64.

Figure 21. Computational-cost breakdown and speedup with number of processors for PS-

DNS, where nx = 256, ny = 41, and nz = 64.

Figure 22. Message volume and size for one timestep for PSDNS, where nx = 64 and ny = 41.

Figure 23. Communication bandwidth per processor as function of message size, where

nx = 64 and ny = 41.

Figure 24. Computational-cost breakdown and slowdown with streamwise grid re�nement

for PSDNS, where ny = 41, nz = 32, and np = 16.

Figure 25. Computational-cost breakdown and slowdown with wall-normal grid re�nement

for PSDNS, where nx = 64, nz = 32, and np = 16.

Figure 26. Computational-cost breakdown and slowdown with spanwise grid re�nement for

PSDNS, where nx = 64, ny = 41, and np = 16.

Figure 27. Memory size of executable with spanwise grid for PSDNS, where nx = 256 and

ny = 41.
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Figure 28. Computational and communication cost with number of processors for PSDNS

on IBM SP1, where nx = 896, ny = 61, nz = 32.

Figure 29. Computational and communication cost with number of processors for PSDNS

on IBM SP2, where nx = 896, ny = 61, nz = 32.
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Table 1. Operation Counts for the Major Kernels

Kernel Operation count (oc) Normalization count
= oc/nxnynz

MAT-MAT O(nxn3ynz) O(n2y)
FFT O(nxnynzlog2nz) O(log

2
nz)

TRIDIAG O(nxnynz) O(1)
PENTADIAG O(nxnynz) O(1)

Table 2. Major Kernel Executions With Di�erent Data Mappings

Kernel x-mapping y-mapping z-mapping
MAT-MAT global global local

FFT local local global
TRIDIAG global local local

PENTADIAG global local local

Table 3. Illustration of the xor Scheme for Complete Exchanges

node 0 1 2 3 4 5 6 7
steps
1 1 0 3 2 5 4 7 6
2 2 3 0 1 6 7 4 5
3 3 2 1 0 7 6 5 4
4 4 5 6 7 0 1 2 3
5 5 4 7 6 1 0 3 2
6 6 7 4 5 2 3 0 1
7 7 6 5 4 3 2 1 0
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Table 4. Performance of Application Simulation on 8, 16, and 32 Nodes of SP1

no. of Actual Idealized Actual Idealized Exec.
proc. sec sec MFLOPS MFLOPS Mbytes
np 1 2-np /proc. Total /proc. Total
8 53.75 32.4 29.1 30 241 55 440 79
16 29.75 17.7 14.5 27 436 55 880 60
32 18.75 10.2 7.1 22 691 56 1760 50

Table 5. Total Data Exchange for Single Iteration Step of Large Application on SP1

no. of Comm, Message Bandwidth
proc. sec Vol. Size Total /proc.
np Mb Mb Mb/sec Mb/sec
8 19.0 595 0.208 63 7.9
16 11.0 638 0.052 116 7.3
32 7.0 659 0.013 176 5.5
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Figure 1. Computational domain of boundary-layer transition problem.
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Figure 4. Amplitude growth with downstream distance for a Tollmien-Schlichting wave with

initial amplitude uo = 0:0001%, Reynolds number R��
o
= 900, and frequency ! = 0:0774.
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Figure 5. Computational and communication cost with number of processors for initial

implementation of PSDNS, where nx = 64 and ny = 41.

Figure 6. Computational and communication cost with number of processors for optimized

PSDNS, where nx = 64 and ny = 41.
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Figure 7. Computational-cost breakdown for each processor for initial implementation of

PSDNS, where nx = 64, ny = 41, and nz = 8.
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Figure 8. Computational-cost breakdown and speedup with number of processors for PSDNS,

where nx = 64, ny = 41, and nz = 64.

Figure 9. Computational-cost breakdown for one (left) and four (right) x � y planes per

processor with number of processors for PSDNS, where nx = 64 and ny = 41.
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Figure 10. Computational and communication cost with number of processors for PSDNS,

where nx = 128 and ny = 41.

Figure 11. Computational-cost breakdown and speedup with spanwise grid for PSDNS,

where nx = 128, ny = 41, and np = 8.
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Figure 12. Computational-cost breakdown and slowdown with streamwise grid re�nement

for PSDNS, where ny = 41, nz = 32, and np = 16.

Figure 13. Computational-cost breakdown and slowdown with wall-normal grid re�nement

for PSDNS, where nx = 64, nz = 32, and np = 16.
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Figure 14. Computational and communication cost with number of processors for PSDNS,

where nx = 64 and ny = 41.

Figure 15. Computational and communication cost with number of processors for PSDNS,

where nx = 128 and ny = 41.
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Figure 16. Computational and communication cost with number of processors for PSDNS,

where nx = 256 and ny = 41.

Figure 17. Computational speedup with spanwise grid for PSDNS, where nx = 64 and

ny = 41.
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Figure 18. Computational speedup with spanwise grid for PSDNS, where nx = 128 and

ny = 41.

Figure 19. Computational speedup with spanwise grid for PSDNS, where nx = 256 and

ny = 41.
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Figure 20. Computational-cost breakdown and speedup with number of processors for PS-

DNS, where nx = 64, ny = 41, and nz = 64.

Figure 21. Computational-cost breakdown and speedup with number of processors for PS-

DNS, where nx = 256, ny = 41, and nz = 64.
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Figure 22. Message volume and size for one timestep for PSDNS, where nx = 64 and ny = 41.

Figure 23. Communication bandwidth per processor as function of message size, where

nx = 64 and ny = 41.
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Figure 24. Computational-cost breakdown and slowdown with streamwise grid re�nement

for PSDNS, where ny = 41, nz = 32, and np = 16.

Figure 25. Computational-cost breakdown and slowdown with wall-normal grid re�nement

for PSDNS, where nx = 64, nz = 32, and np = 16.
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Figure 26. Computational-cost breakdown and slowdown with spanwise grid re�nement for

PSDNS, where nx = 64, ny = 41, and np = 16.

Figure 27. Memory size of executable with spanwise grid for PSDNS, where nx = 256 and

ny = 41.
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Figure 28. Computational and communication cost with number of processors for PSDNS

on IBM SP1, where nx = 896, ny = 61, nz = 32.

Figure 29. Computational and communication cost with number of processors for PSDNS

on IBM SP2, where nx = 896, ny = 61, nz = 32.
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